您现在的位置是: 首页 > 天气影响 天气影响

地质灾害气象预报预警_地质灾害气象预报

tamoadmin 2024-10-29 人已围观

简介1.地质灾害气象预警区划2.滑坡、泥石流地质灾害气象预警预报3.地质灾害气象风险**预警啥意思4.如图是某年9月5日,中央电视台公布的地质灾害气象预报等级图。(3级表示泥石流、滑坡发生的可能性较大,4一、Ⅲ级—地质灾害气象预报预警应急响应:当日降雨量达到50~60毫升或者过程降雨量达到80~120毫升时,就达到Ⅲ级(注意级)。二、Ⅳ级—地质灾害气象预报预警应急响应:当日降雨量达到60~80毫升或者

1.地质灾害气象预警区划

2.滑坡、泥石流地质灾害气象预警预报

3.地质灾害气象风险**预警啥意思

4.如图是某年9月5日,中央电视台公布的地质灾害气象预报等级图。(3级表示泥石流、滑坡发生的可能性较大,4

地质灾害气象预报预警_地质灾害气象预报

一、Ⅲ级—地质灾害气象预报预警应急响应:当日降雨量达到50~60毫升或者过程降雨量达到80~120毫升时,就达到Ⅲ级(注意级)。

二、Ⅳ级—地质灾害气象预报预警应急响应:当日降雨量达到60~80毫升或者过程降雨量达到120~150毫升时,就达到Ⅳ级(预警级)。

三、Ⅴ级—地质灾害气象预报预警应急响应:当日降雨量达到大于80毫升或者过程降雨量大于150毫升时,就达到Ⅴ级(警报级)。

地质灾害气象预警区划

我国是一个地质灾害多发的国家,崩塌、滑坡和泥石流等常见灾害发生的地域广、频率高,具有较强的破坏性。研究表明,除地质构造及人类活动外,气象条件也是形成地质灾害的一大原因,暴雨或连续降雨常常是触发地质灾害的直接因素。因此,如何通过对雨情的监测提供可靠的地质灾害预警资讯,成为一项重要工作内容。

 1.地质灾害预警报系统概述

目前,在气象部门的协助下,许多地区的国土部门都相继建立了地质灾害预警预报系统。灾害的风险预报是指在收集和集中监测资讯的基础上,进一步分析地质灾害及次生、衍生灾害等可能对社会经济、群众生活所造成的影响,提前释出风险预报,并为 *** 部门、有关单位及广大民众提供应对的措施和指导。气象监测***特别是雨量监测***系统和基于WebGIS的地质灾害预警系统组成的地质灾害预警预报平台,在突发性地质灾害的预测和防范中起到了关键性的作用[1]。

 1.1预警报系统的建设目标

预警报系统的目标是建设一个时效高、预警报资讯内容全面且准确可靠的地质灾害预警报体系,为相关 *** 部门的决策和灾害地区群众的减灾措施提供科学、及时、有效的资讯指导。充分利用现代化建设的成果,在已获取的大量气象探测和灾害性天气监测资讯的基础上,对资讯进行存贮、处理和分析,建立地质灾害预警报服务平台和流程,根据决策服务的要求,提供连续无缝隙的地质灾害预警报资讯[2]。

 1.2预警报系统的工作流程

地质灾害预警预报系统主要由监测系统和预警报系统2部分组成。启动气象资讯收集、地质灾害资讯收集以及资讯释出自动生成等模组后,通过实时监控雨情,一旦降水因子达到相应的监测指标,系统即可在决策中心进行资料分析,生成地质灾害预警等级,并在确定资讯释出后,利用简讯、广播、电视、网路等媒介按照预警等级对特定部门及相关群众释出警报资讯。

 2.地质灾害预警报系统的组成及实现

基于WebGIS的地质灾害预警系统中,灾害资讯的汇集及预警平台是资料资讯处理和服务的核心;气象监测系统具有雨情报汛、预警等功能;群测群防预警系统则包括预警释出、警报传输和资讯反馈功能[3]。要实现地质灾害预警系统的正常运转,应注意以下几个方面:

 2.1建立高效稳定的应用平台

高效稳定的应用平台为整个地质灾害预警系统的正常运作提供强有力的支撑,对提高系统的稳定性具有至关重要的作用。良好的应用平台依赖于完善的资料资讯、高科技的硬体装置、成熟的先进软体环境及规划合理的结构设计。

资料库是地质灾害预警报系统的核心部分,除实时集和释出的雨量资料、预报雨量资料、雷达图、卫星云图和台风资讯等气象资料外,当地行政区域图、区域地理资讯及区域内的群众资讯等,都是资料库的重要组成部分。软体系统应由使用者介面、后台管理系统、资料交换平台***EAI***、后台管理应用核心构件群、WebGIS元件、Microsoft.NET应用伺服器平台及其他系统组成。先进、灵活、适用的软体架构符合管理资讯化的要求,以构件化设计为核心,实现触发、资料驱动、引数设定的开放可行的地质灾害预警预报系统管理平台。

 2.2保证系统的安全性

预警预报系统将为防灾减灾的决策提供重要的依据和指导,因此,必须保证其安全性和权威性,安全是系统设计的关键[5-6]。首先,在设计中要充分考虑到网路安全的问题;其次,注重系统的整体维护是延长系统使用寿命的重要保障。此外,地质灾害预警预报系统与其他相关系统的联络均以特定的介面程式来实现,当地质灾害预警预报系统或相关系统出现故障时,不会出现系统间的相互影响。在系统的执行中,应保留详细的操作日志,出现问题可以查明错误原因,及时恢复,并为系统的科学评价提供依据。

 2.3科学合理的灾害等级划分

灾害等级的划分关系到预警报启动的决策、预警报资讯的释出范围及释出物件等,在地质灾害预警报系统中,需要给予特别的重视[4]。依照国土部制定的地质灾害预报等级标准,预报等级可分为5级:一级为可能性很小;二级为可能性较小;***注意级***为可能性较大;四级***预警级***为可能性大;五级***警报级***为可能性很大。从预警报系统的角度分析,一级和二级灾害没有实际预警意义,预警工作由开始启动,应围绕三至五级地质灾害开展防灾减灾工作。

 3.小结

综上所述,地质灾害预警预报系统的建设和维护是一项长期工作,涉及的部门多、范围广,须参考的因素多而复杂。因此,必须在工作中不断地总结经验,并在各部门的积极配合下,建立顺畅的资讯链,为相关部门和群众提供即时的、权威的、人性化的资讯指导,将地质灾害的影响降到最低。

滑坡、泥石流地质灾害气象预警预报

如前所述,在地质灾害的控制与影响因素中,降雨和人类工程活动是最为活跃的触发因素。在人类不合理工程活动地段,黄土的卸荷与风化裂隙、落水洞、陷穴等尤为发育,降水容易沿着这些通道快速渗入地下,引发地质灾害,降雨成为触发地质灾害最积极的因素。所以,通过气象预报,可有效开展滑坡崩塌泥石流等地质灾害预警,实现防灾减灾的目标。

一、临界降雨量确定

据本次调查资料,2000~2004年发生的13次新滑坡和16次崩塌,其发生频次均与月平均降水量呈显著的正相关,滑坡、崩塌发生时间全部落在6~10月份,在9月份最高,7月和8月次之,6月和10月份较低。地质灾害的发生频次与本区的降水特征有关,9月份常出现淋雨,并伴有大雨,这种降水特征有最利于浸润黄土和入渗补给地下水,触发地质灾害发生;7月和8月份集中了全年75%以上的R1h≥10mm强降水和82%以上的R1h≥20mm强降水,这种强降水特征不如9月份有利于降水入渗,所以,7月和8月份出现的灾害频次不如9月份高;6月和10月份强降水频率低于7月,8月和9月,但高于其他月份;另外,10月份也常有淋雨,所以在6月和10月份也引发了地质灾害。由此可见,无论是淋雨,还是强降雨,都是触发地质灾害的因素。

宝塔区历史上仅有一个气象站,不能反映降水特征的空间展布,为了能够揭示区域降水特征,本次与陕西省气象局合作,对1980年到2005年25年间,陕北黄土高原地区的27个气象站的日、时降水量进行了分析,统计了各站日降水量中R1h≥10mm或20mm的局地暴雨过程,对其气候特征和时空间演变规律进行归类分析、研究总结。研究结果表明:

(1)在25年中,陕北黄土高原共出现R1h≥10mm的强降水2638时次,R1h≥20mm强降水574时次,年平均R1h≥10mm的强降水有106时次,R1h≥20mm强降水有23时次。

(2)R1h≥10mm发生时次最多的年份是1994年,为173时次;最少的是1980年,仅有36时次。R1h≥20mm强降水发生次数最多的年份是1994年,为56时次;最少的是1982年仅有3时次。可见陕北强降水出现时次的年际差异较大,最多年份与最少年份相差十几倍之多。

(3)R1h≥10mm强降水旬分布具有多峰值的特点。7月中旬,7月下旬和8月上旬为第一高峰值,在数值比较接近也是全年的最大峰值;8月下旬为全年的次峰值,6月上旬为全年的第三峰值。R1h≥20mm单峰特征较明显,8月上旬为其高峰值,8月上旬之前,强降水频次缓升后,强降水的频次突然降低、减少。

(4)淋雨主要出现在9月,10月份也有淋雨和大雨发生。

(5)宝塔区暴雨年频次>0.8(图7-5),大雨日年频次为4左右(图7-6)。

图7-5 陕北暴雨年频次分布图

图7-6 陕北大雨年频次分布图

对析本区降水特征和地质灾害发生的关系,可以确定地质灾害气象预警的临界降雨量。预警的临界降雨量特征值分别是:

(1)日降雨量≥50mm(R24h≥50mm);

(2)6小时降雨量≥25mm(R6h≥25mm);

(3)1小时降雨量≥20mm或3小时降雨量≥25mm并且日降雨量≥30mm(R1h≥20mm或R3h≥25mm且R24h≥30mm);

(4)连续多日降雨,且日降雨量≥10mm。

符合以上条件之一就应该进行地质灾害预警,作为地质灾害气象诱发日向外发布。

据此临界降雨量可以进行模拟校验,校验结果表明,调查区内地质灾害暴雨诱发日为2.5d/a,连阴雨诱发日为2.8d/a,即每年可预报的次数将在2~7次。说明选取上述4项指标是符合实际情况和可以操作的(图7-7)。

图7-7 陕北地质灾害暴雨诱发日分布图

二、地质灾害气象预警级别

参考陕西省地质灾害气象预报预警分级划分,结合调查区实际情况,将预警级别划分为:分别是Ⅰ级预警、Ⅱ级预警和Ⅲ级预警。

Ⅰ级预警是高级预警,地质灾害发生概率最大,为地质灾害发布警报级;

Ⅱ级预警是中级预警,地质灾害发生概率中等,为地质灾害发布预报级;

Ⅲ级预警是低级预警,地质灾害发生概率最小,为地质灾害不发布预报级。

三、地质灾害气象预警区划

(一)日降雨量≥50mm预警区划

本降雨量级别在预警气象中相对降雨强度为最小(图7-8)。

图7-8日降雨量≥50mm预警区划图

(1)Ⅰ级预警区的范围最小,仅限于北半部延河流域,分散于这一区域的北部、西部和中部少部分地区(图中深灰色)。总面积927.71km2,占调查区总面积的26.1%。这些地区位居延河干流,河谷深切;以及较长支流的上游,沟谷强烈下切地带,人类工程活动极为强烈,为调查区的地质灾害发育区。

(2)Ⅱ级预警区主要分布在调查区北部延河流域(图中浅灰色),面积1303.96km2,占调查区总面积的36.7%。这一区域大多为延河次级支沟黄土梁、峁地区,主要沟谷多处于中游,人类工程活动较强烈,地质灾害发育强度稍低。

(3)Ⅲ级预警区分布于调查区南部汾川河流域(图中白色),面积1324.33km2,占调查区总面积的37.2%。这里植被茂盛,沟谷宽缓,人类工程活动不强烈,地质灾害极不发育。

(二)6小时降雨量≥25mm预警区划

本降雨量级别在预警气象中相对降雨强度为中等(图7-9)。

图7-9 6小时降雨量≥25mm预警区划图

(1)Ⅰ级预警区的范围较前有所扩大。除北部延河流域中部少量区域外,占据北部延河流域大部分地区(图中深灰色)。总面积1627.70km2,占调查区总面积的45.8%。为调查区地质灾害发育区及部分次发育区。

(2)Ⅱ级预警区的范围较前有所减少。主要分布在调查区北部延河流域(图中浅灰色),南部汾川河流域有少量分布。总面积676.38km2,占调查区总面积的19%。这一区域大多为延河次级支沟黄土梁、峁地区,主要沟谷多处于中游,人类工程活动较强烈,地质灾害发育强度稍低。

(3)Ⅲ级预警区的范围较前有所减少,全部分布于调查区南部汾川河流域(图中白色),面积1251.92km2,占调查区总面积的35.2%。这里植被茂盛,沟谷宽缓,人类工程活动不强烈,地质灾害极不发育。

(三)1小时降雨量≥20mm预警区划

本降雨量级别还包括3小时降雨量≥25mm并且日降雨量≥30mm,在预警气象中相对降雨强度为最大(图7-10)。

图7-10 1小时降雨量≥20mm预警区划图

(1)Ⅰ级预警区的范围为扩展至最大。占据整个北部延河流域(图中深灰色)。总面积2232.67km2,占调查区总面积的62.8%。为调查区地质灾害发育区及全部次发育区。

(2)Ⅱ级预警区的范围缩减至最少。从调查区北部延河流域全部退出,仅分布在南部汾川河流域主干流(图中浅灰色),分布面积194.91km2,占调查区总面积的5.5%。这一区域为汾川河主干流上中游,沟谷切割较强烈,地质灾害发育程度较其他地区稍强。

(3)Ⅲ级预警区的范围缩减至最小,全部分布于调查区南部汾川河流域(图中白色),面积1128.42km2,占调查区总面积的31.7%。这里植被茂盛,沟谷宽缓,人类工程活动较少,地质灾害极不发育。

地质灾害气象风险**预警啥意思

气象因素是诱发滑坡、泥石流等地质灾害的关键因素,开发基于Web-GIS和实时气象信息的实时预警预报系统,实现地质灾害实时预警预报与网络连接的地质灾害预警预报与减灾防灾体系,对可能遭受的地质灾害进行实时预警预报,及时广泛地发布预警信息,有利于实现科学高效、快速地开展灾害防治,从而最大限度地减少灾害损失,保护人民生命财产安全,变被动防治为主动防治地质灾害。

一、滑坡、泥石流地质灾害气象预警预报的主要依据

区域地质灾害(滑坡、泥石流等)空间预测主要是圈定地质灾害易发区,也就是前面论述的地质灾害危险性评估与区划。在区域地质灾害空间预测的基础上,结合实时的气象动态信息,分析研究滑坡、泥石流等地质灾害的主要诱发因素,研究同一地质环境区域,在不同气象条件下发生地质灾害的统计规律和内在机理,通过确定有效降雨量模型、降雨强度模型、降雨过程模型的临界阀值,建立基于实时动态气象信息的区域地质灾害预警预报时空耦合关系,从而对区域性的滑坡、泥石流等地质灾害进行危险性时空预警预报。

根据研究区域的地质条件、灾害调查情况、气象条件等,划分地质灾害易发区等级,统计已发生滑坡、泥石流等地质灾害与有效降雨量、24小时降雨强度的相关性,确定出不同易发区不同等级的临界降雨量(I、II),作为判别分析的阀值,确定降雨量危险性等级。降雨量小于I级临界降雨量的为低危险性,降雨量介于Ⅰ-Ⅱ级临界降雨量之间的为中危险性,降雨量大于II级临界降雨量的为高危险性。

将各单元的有效降雨量与临界有效降雨量进行对比,确定出各单元的降雨量危险性等级,将降雨量危险性等级和地质灾害易发区等级进行叠加,叠加结果见表3-4和图3-2,对应于4个不同的易发区把地质灾害预警预报等级划分为5级:其中,3级及3级以上为预警预报等级,5级为预警预报区的最高等级,1级和2级为不预警区,不同的预警预报等级用不同的颜色予以表示。3级预警区是指应加强对灾害点的监测地区;4级预警区是指应密切加强对灾害点监测的地区,取一定的防范措施;5级预警区是指应全天对灾害点进行监测,直接受害对象尤其是住户和人员在必要时应该取避让措施。在预警预报中,3级为注意级,4级为预警级,5级为警报级。

表3-4 地质灾害预警区等级划分表

图3-2 区域地质灾害宏观预警构建思路示意图

我国自2003年开展全国地质灾害气象预警预报工作以来,一些专家学者就致力于预警预报模型方法的研究与探索,主要经历了两个阶段。

第一阶段,2003~2006年,用的是第一代预警方法,即临界雨量判据法。该方法的主要原理是根据中国地貌格局、地质环境特征及其与降雨诱发型崩滑流地质灾害关系统计分析结果,以全国性分水岭、气候带、大地构造单元和区域地质环境条件,进行一级分区;以区域分水岭、历史滑坡泥石流分布密度、地形地貌特征、地层岩性、地质构造与新构造运动、年均降雨量分布等,进行二级分区;将全国划分为7个预警大区、74个预警区;并分区开展历史地质灾害点与实况降雨量之间的统计关系,确定各预警区诱发滑坡泥石流灾害的临界雨量,建立预警预报判据模板(图3-3);利用全国地质灾害数据库和县市调查信息系统中的地质灾害样本和中国气象局提供的降雨资料,通过统计分析,确定地质灾害发生前的1日、2日、4日、7日、10日和15日的临界雨量作为判据模板,建立地质灾害气象预警预报模型,开展地质灾害预警预报。

图3-3 预警预报判据模板

第二阶段,即第二代预警方法。2006~2007年,“全国地质灾害气象预警预报技术方法研究”项目设立,开展了全国地质灾害气象预警预报方法升级换代的研究工作。刘传正教授提出了地质灾害区域预警理论的三分法,即隐式统计预报法、显式统计预报法和动力预报法;并提出了显式统计预警方法(称为第二代预警方法)设计思路。该方法改进了第一代预警方法中仅依靠临界过程雨量方法的局限,实现了临界过程降雨量判据与地质环境空间分析相耦合。2007年该项工作取得初步研究成果,经完善后已在2008年全国汛期预警工作中正式使用。

根据地质灾害区域预警原理和显式预警系统设计思路,具体预警模型建立过程如下:

(1)地质灾害预警分区。将全国分为7个预警大区,分区建立预警模型。

(2)地质灾害气象预警信息图层编制。充分考虑地质灾害发生的地质环境基础信息、地质灾害历史发生实况等,共编制预警信息图层30个。

(3)地质灾害潜势度计算。探索一条计算地质灾害潜势度的计算方法,根据历史地质灾害点分布情况,用不确定系数法计算地质环境CF值、用项目组创新提出的权重确定法确定权重,从而计算地质灾害潜势度。

(4)统计预警模型建立。以10km×10km的网格进行剖分,将地质灾害潜势度、历史灾害点当日雨量、前期雨量作为输入因子,地质灾害实发情况作为输出因子,用多元线性回归方法,建立预警指数计算模型,从而确定预警等级。

二、美国旧金山湾滑坡泥石流气象预警系统

目前世界上滑坡泥石流灾害气象预警主要是依据美国旧金山湾滑坡泥石流预警系统提出的临界降雨阀值的方法。该系统在1985年至1995年期间运行了10年,后因种种原因被迫关闭。它是世界上运行时间最长的滑坡泥石流预警系统,其经验值得思考。

Campbell从1969年开始研究洛杉矶滑坡发生机制,15年提出了建立基于国家气象局(NWS)降雨预报和(前多普勒)雷达影像的洛杉矶泥石流预警系统的设想。Campbell指出,泥石流预报还是可能的,可通过降雨强度和持续时间的监测,并与根据降雨-滑坡发生概率的关系所建立的临界值进行比较,进行泥石流灾害等级的等级预报。一旦超过临界值,就要对居住在山脚下的居民发出预警,撤离危险地,最大程度地减少灾害损失。Campbell提出的泥石流预警系统由以下方面构成:①雨量计观测系统,记录每小时的降雨量;②具有能够识别暴雨地区降雨强度中心的气象编图系统;将降雨数据标绘在地形(坡度)图及相关滑坡影响图上;③实时集数据和预警管理和通讯网络。

1982年1月初,灾难性暴雨袭击了旧金山湾地区,引发了数以千计的泥石流及其他类型的浅层滑坡。经济损失达数百万美元,25人死亡。尽管该地区的人们得知暴雨预报,但并没有得到任何关于滑坡、泥石流的警报。尽管Campbell提出的建议没有在旧金山湾地区得以实施,但1982年的这场灾难件使得建立泥石流预警系统变得十分紧迫和必要。

图3-4 加州La Honda的泥石流降雨临界线

Cannon和Ellen(1985)建立了加州La Honda的泥石流降雨临界线(图3-4)。他们用年均降雨量(MAP)对临界降雨持续时间和临界降雨强度进行了修正(标准化),即将临界降雨强度修正为临界降雨强度/年均降雨量(MAP)。他们建立的滑坡降雨临界值是旧金山湾地区泥石流预警系统的基础。1986年2月旧金山湾地区连降暴雨,美国地质调查局和国家气象局联合启动了泥石流灾害预警系统,通过NWS广播电台系统发布了两次公共预警。这是美国首次发出的泥石流灾害预警。该次暴雨引发了旧金山湾地区数以百计的泥石流,造成1人死亡,财产损失达1000万美元。如果不是预警系统的准确预报,损失将会更加严重。

1986年的泥石流灾害预警是根据Cannon和Ellen(1985)确定的经验降雨临界值发布的。1989年Wilson等人在该经验降雨临界值的基础上,建立了累积降雨量/降雨持续时间关系曲线,对不同的规模和频率的泥石流确定不同的临界值降雨量。据此USGS滑坡工作组进行泥石流灾害预报。

Wilson自1995年一直研究困扰早期滑坡预警系统的泥石流降雨临界值强烈受局部降水条件(地形效应)影响的难题。

如前所述,Cannon(1985)建立的旧金山湾地区的区域泥石流降雨临界值,试图用长期降雨量(MAP)来修正地形效应的影响。MAP是用来描述长期降雨气候条件最常用的参数,可从标准气象图中获得。Cannon建立MAP标准化临界值,是滑坡预警系统的主要技术基础。然而,正如Cannon本人所说,在早期滑坡预警系统运行过程中,发现降雨少的地区ALERT系统的雨量数据会产生“警报”,反映了MAP标准化会出现低MAP地区的不一致性问题。后来Wilson(19)将旧金山湾地区的MAP标准化方法应用到南加州和美国太平洋西北部地区,出现了明显的低估或高估降雨临界值的问题。

降雨量作为参数实际上反映了暴雨规模和频率两个综合作用过程。美国太平洋西北部地区降雨量频率高但每次降雨量小,导致年均降雨量大;而南加州地区则降雨频率小但每次降雨量大,结果是年均降雨量小。年均降雨量标准化方法应识别出那些“极端”的降雨,即降雨量远远超过那些频率高但降雨量小的暴雨。因此,对于估计泥石流降雨临界值来说,单个暴雨的规模要比降雨频率重要得多。

长期的气候作用使斜坡本身达到了一种重力平衡状态,即斜坡入渗与蒸发及地表排水之间达到了平衡。这种长期的平衡作用过程可能包含着无数已知和未知的机制。斜坡土壤的岩土工程性质、地表排水率及水网分布、本土植被都可能对局部气候产生影响。Wilson用日降雨规模—频率分析,重新检查了年均降水量标准化临界值的不一致性。在年均降雨量低的旧金山湾地区,泥石流的降雨临界值高于MAP标准化的预测值。Wilson提出了参考的泥石流降雨临界值,这有益于研究降雨与地表排水之间的相互作用。Wilson的研究表明,5年暴雨重现率可以代表降雨频率与侵蚀率的优化组合关系。对三个具有明显不同降雨气候模式的不同地区(南加州洛杉矶地区、旧金山湾地区、太平洋西北部地区),集了触发致命泥石流灾害的历史雨量数据,建立了(引发广泛泥石流发生)历史上触发大范围泥石流的24小时峰值暴雨降雨量与参考降雨值(5年暴雨重现值)之间的关系曲线(图3-5)。该关系曲线可用来估计泥石流的降雨临界值,与Cannon的MAP标准化降雨临界值相比,特别是可以在更加可靠点的范围内通过插值估计出特定地点(特别是受地形效应影响的山区)的临界值。

图3-5 历史触发大范围泥石流的24小时峰值暴雨降雨量与

尽管旧金山湾地区的滑坡泥石流气象预警系统在1995年关闭了,但自1995年以来没有停止对降雨/泥石流临界值方面的研究。这些研究加深了对降雨、山坡水文条件、长期降雨气象条件和斜坡稳定性之间相互作用的认识,这将为旧金山湾地区乃至世界其他地区的滑坡气象预警工作奠定很好的科学基础。

三、降雨监测与预报

旧金山湾地区滑坡预警系统运行的十年间,当地NWS的天气预报主要依靠1987年2月发射的气象卫星GOE-7(19年被GOES-10所取代)。每隔30分钟,GOES气象卫星传送覆盖从阿拉斯加湾至夏威夷的北美西海岸云团图像。根据这些图像,当地NWS可以估计出大暴雨的速度、方向和强度。图像中的红外波谱图像还能指示云团的温度,它是估计降雨强度的重要信息。另外,地面气象观测站可获得大气压、风速、温度、降雨数据,与卫星气象数据雨季NWS国家气象中心提供的长期天气趋势预报信息相结合,当地NWS天气预报办公室综合分析这些数据,准备和提供定量天气预报(QPT),一天发布两次加州北部和南部地区未来24小时天气预报。

雨量监测(ALERT)系统能远距离自动集高强度降雨观测数据,并将数据传送到当地实时天气预报中心。到1995年,旧金山湾地区ALERT系统已建立了60个雨量观测站点(图3-6)。尽管每个站点的建立得到了NWS的支持,但每个站点的设备购买、安装和维护则由其他联邦、州和地方机构负责。从1985年到1995年滑坡预警系统运行期间,USGS一直负责维护设在加州Menlo公园的ALERT接收器和数据处理微机系统。

要评估即将到来的暴雨是否会引发泥石流灾害,要考虑两个临界值:①前期累积降雨量(即土壤湿度);②临近暴雨的强度和持续时间的综合分析。为此,USGS滑坡工作组在La Honda研究区安装了浅层测压计,并对土壤进行了监测。如果测压计首先显示出对暴雨的强烈反应,即认为已达到前期临界值。通常冬至后需几个星期的时间才能使土壤湿度超过前期临界值,之后要随时关注暴雨强度和持续时间是否足以触发泥石流灾害。

图3-6 1992年旧金山湾滑坡预警雨量监测系统—ALERT

四、泥石流灾害预警的发布

当暴雨开始时,开始监测降雨强度,估计暴雨前锋到来的速度。根据观测的降雨量,结合当地NWS的定量降雨预测(QPF);与建立的泥石流降雨临界值进行对析,确定泥石流灾害的类型和规模。NWS和USGS的工作人员共同参与该阶段的工作,向公众发布三个等级的泥石流灾害预警:即①城市和小河流洪水劝告(urban and small streamsflood advisory);②洪水/泥石流关注(flash-flood/debris-flow watch);③洪水/泥石流警报(flash-flood/debris-flow warning)。在1986年至1995年间,多次发布了不同级别的泥石流灾害预警。

五、小结

滑坡和泥石流灾害的危险性预测主要是通过灾害产生条件分析,预测区域上或某斜坡地段将来产生滑坡泥石流灾害的可能性,圈定出可能产生滑坡泥石流灾害的影响范围及活动强度。滑坡泥石流灾害危险性预测的指标体系结构层次如图3-7所示,根据滑坡泥石流灾害危险性预测的研究对象的差异性,可从三种研究尺度建立滑坡泥石流灾害危险性预测指标体系。

图3-7 地质灾害空间预测指标体系结构层次图

区域性滑坡泥石流灾害危险性预测就是通过分析滑坡泥石流灾害在区域空间分布的聚集性及规律性,圈定出滑坡泥石流灾害相对危险性区域,从而为国土规划、减灾防灾、灾害管理与决策提供依据。不同的预测尺度对应于不同的勘察阶段和研究精度。滑坡泥石流灾害危险性区划对应于可行性研究阶段,要求对拟开发地域工程地质条件的分带规律进行初步综合评价,确定滑坡泥石流灾害作用发生的可能性及敏感性,提交的成果是区域工程地质条件综合分区图和地质灾害预测区划图。

如图是某年9月5日,中央电视台公布的地质灾害气象预报等级图。(3级表示泥石流、滑坡发生的可能性较大,4

地质灾害**预警信号是指24小时内地质灾害发生的风险较高。

地质灾害**预警信号是地质灾害预警信号中的第一级。地质灾害气象预警是指地质和气象部门依据当前环境发布的灾害预警。地质灾害气象预警预报信息每年汛期(5-9月)发布,目的是提醒被预警区的干部和群众防范滑坡、崩塌和泥石流灾害。

地质灾害包括地震、山体滑坡、泥石流等。这些灾害往往给人们的生活和工作带来巨大的影响。地质灾害**预警信号的发布,可以帮助人们提前做好应对准备。

对于居住在可能受灾区域的人们来说,他们可以提前取防护措施,如撤离到安全地带、加固房屋结构等。企事业单位和相关部门也可以提前做好灾害应对准备工作,如加强安全设施检修、防灾设备的调试和检验等。这些举措的实施可以有效降低人员伤亡和财产损失。

地质灾害预警等级

1、红色等级预警:这意味着可能会发生严重的地质灾害,可能会给人们的生命和财产安全带来巨大威胁。在这种情况下,人们应该立即取紧急措施,迅速转移至安全地带,避免在灾害发生时受到伤害。

2、橙色等级预警:此时,可能发生一定程度的地质灾害,虽然威胁程度没有红色等级预警那么高,但人们仍然需要保持警惕,取必要的预防措施。比如,如地质灾害可能会引发山体滑坡或土壤液化等,居民可通过加固住房或者暂时迁出危险地区来减少风险。

3、**等级预警:在这种情况下,地质灾害可能性较低,但仍然需要人们保持警惕。这时候,居民可以加强房屋防护和加固工程,对可能出现的地质灾害进行防范。此外,监测地势和气象变化也是非常重要的,以及时应对可能的风险。

4、蓝色等级预警:在这种情况下,地质灾害气象风险相对较小,人们可以放心居住或从事相关活动。然而,尽管风险较低,但仍然需要保持警惕,并随时关注天气预报和相关风险等级,以便做出及时的调整和应对。

小题1:B

小题2:A

本题考查影响我国的自然灾害。

小题1:读图可知,图示滑坡、泥石流灾害发生等级最高位于陕西、甘肃东南部和四川、湖北北部,同一时间易发生地质灾害的区域出现明显差异,这与气象条件有关,联系我国雨带的分布、夏季多暴雨有关。

小题2:植树造林是防治滑坡、泥石流灾害的根本措施。